Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Rep ; 12(1): 12204, 2022 07 16.
Article in English | MEDLINE | ID: covidwho-1937450

ABSTRACT

Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Lung , Metabolomics/methods , Proteomics/methods , Severity of Illness Index
3.
JAMA Netw Open ; 5(3): e223890, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1756516

ABSTRACT

Importance: Prior observational studies suggest that aspirin use may be associated with reduced mortality in high-risk hospitalized patients with COVID-19, but aspirin's efficacy in patients with moderate COVID-19 is not well studied. Objective: To assess whether early aspirin use is associated with lower odds of in-hospital mortality in patients with moderate COVID-19. Design, Setting, and Participants: Observational cohort study of 112 269 hospitalized patients with moderate COVID-19, enrolled from January 1, 2020, through September 10, 2021, at 64 health systems in the United States participating in the National Institute of Health's National COVID Cohort Collaborative (N3C). Exposure: Aspirin use within the first day of hospitalization. Main Outcome and Measures: The primary outcome was 28-day in-hospital mortality, and secondary outcomes were pulmonary embolism and deep vein thrombosis. Odds of in-hospital mortality were calculated using marginal structural Cox and logistic regression models. Inverse probability of treatment weighting was used to reduce bias from confounding and balance characteristics between groups. Results: Among the 2 446 650 COVID-19-positive patients who were screened, 189 287 were hospitalized and 112 269 met study inclusion. For the full cohort, Median age was 63 years (IQR, 47-74 years); 16.1% of patients were African American, 3.8% were Asian, 52.7% were White, 5.0% were of other races and ethnicities, 22.4% were of unknown race and ethnicity. In-hospital mortality occurred in 10.9% of patients. After inverse probability treatment weighting, 28-day in-hospital mortality was significantly lower in those who received aspirin (10.2% vs 11.8%; odds ratio [OR], 0.85; 95% CI, 0.79-0.92; P < .001). The rate of pulmonary embolism, but not deep vein thrombosis, was also significantly lower in patients who received aspirin (1.0% vs 1.4%; OR, 0.71; 95% CI, 0.56-0.90; P = .004). Patients who received early aspirin did not have higher rates of gastrointestinal hemorrhage (0.8% aspirin vs 0.7% no aspirin; OR, 1.04; 95% CI, 0.82-1.33; P = .72), cerebral hemorrhage (0.6% aspirin vs 0.4% no aspirin; OR, 1.32; 95% CI, 0.92-1.88; P = .13), or blood transfusion (2.7% aspirin vs 2.3% no aspirin; OR, 1.14; 95% CI, 0.99-1.32; P = .06). The composite of hemorrhagic complications did not occur more often in those receiving aspirin (3.7% aspirin vs 3.2% no aspirin; OR, 1.13; 95% CI, 1.00-1.28; P = .054). Subgroups who appeared to benefit the most included patients older than 60 years (61-80 years: OR, 0.79; 95% CI, 0.72-0.87; P < .001; >80 years: OR, 0.79; 95% CI, 0.69-0.91; P < .001) and patients with comorbidities (1 comorbidity: 6.4% vs 9.2%; OR, 0.68; 95% CI, 0.55-0.83; P < .001; 2 comorbidities: 10.5% vs 12.8%; OR, 0.80; 95% CI, 0.69-0.93; P = .003; 3 comorbidities: 13.8% vs 17.0%, OR, 0.78; 95% CI, 0.68-0.89; P < .001; >3 comorbidities: 17.0% vs 21.6%; OR, 0.74; 95% CI, 0.66-0.84; P < .001). Conclusions and Relevance: In this cohort study of US adults hospitalized with moderate COVID-19, early aspirin use was associated with lower odds of 28-day in-hospital mortality. A randomized clinical trial that includes diverse patients with moderate COVID-19 is warranted to adequately evaluate aspirin's efficacy in patients with high-risk conditions.


Subject(s)
Aspirin , COVID-19 , Adult , Aspirin/therapeutic use , Cohort Studies , Hospital Mortality , Hospitalization , Humans , Middle Aged , United States/epidemiology
4.
J Med Virol ; 94(3): 1035-1049, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718369

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into eight fundamental clades with four of these clades (G, GH, GR, and GV) globally prevalent in 2020. To explain plausible epistatic effects of the signature co-occurring mutations of these circulating clades on viral replication and transmission fitness, we proposed a hypothetical model using in silico approach. Molecular docking and dynamics analyses showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase-2. RdRp mutation p.P323L significantly increased genome-wide mutations (p < 0.0001), allowing for more flexible RdRp (mutated)-NSP8 interaction that may accelerate replication. Superior RNA stability and structural variation at NSP3:C241T might impact protein, RNA interactions, or both. Another silent 5'-UTR:C241T mutation might affect translational efficiency and viral packaging. These four G-clade-featured co-occurring mutations might increase viral replication. Sentinel GH-clade ORF3a:p.Q57H variants constricted the ion-channel through intertransmembrane-domain interaction of cysteine(C81)-histidine(H57). The GR-clade N:p.RG203-204KR would stabilize RNA interaction by a more flexible and hypo-phosphorylated SR-rich region. GV-clade viruses seemingly gained the evolutionary advantage of the confounding factors; nevertheless, N:p.A220V might modulate RNA binding with no phenotypic effect. Our hypothetical model needs further retrospective and prospective studies to understand detailed molecular events and their relationship to the fitness of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Epistasis, Genetic , Humans , Molecular Docking Simulation , Mutation , Prospective Studies , RNA , RNA-Dependent RNA Polymerase/genetics , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Sci Rep ; 11(1): 24042, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574556

ABSTRACT

The microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 patients = 8, recovered humans = 7, and healthy people = 7) were collected, and underwent to RNAseq-based metagenomic investigation. Our RNAseq data mapped to 2281 bacterial species (including 1477, 919 and 676 in healthy, COVID-19 and recovered metagenomes, respectively) indicating a distinct microbiome dysbiosis. The COVID-19 and recovered samples included 67% and 77% opportunistic bacterial species, respectively compared to healthy controls. Notably, 79% commensal bacterial species found in healthy controls were not detected in COVID-19 and recovered people. Similar dysbiosis was also found in viral and archaeal fraction of the nasopharyngeal microbiomes. We also detected several altered metabolic pathways and functional genes in the progression and pathophysiology of COVID-19. The nasopharyngeal microbiome dysbiosis and their genomic features determined by our RNAseq analyses shed light on early interactions of SARS-CoV-2 with the nasopharyngeal resident microbiota that might be helpful for developing microbiome-based diagnostics and therapeutics for this novel pandemic disease.


Subject(s)
Bacteria/classification , COVID-19/microbiology , Nasopharynx/microbiology , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Case-Control Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Middle Aged , Phylogeny , Symbiosis , Young Adult
6.
Sci Rep ; 11(1): 23023, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537339

ABSTRACT

SARS-CoV-2 (CoV) is the etiological agent of the COVID-19 pandemic and evolves to evade both host immune systems and intervention strategies. We divided the CoV genome into 29 constituent regions and applied novel analytical approaches to identify associations between CoV genomic features and epidemiological metadata. Our results show that nonstructural protein 3 (nsp3) and Spike protein (S) have the highest variation and greatest correlation with the viral whole-genome variation. S protein variation is correlated with nsp3, nsp6, and 3'-to-5' exonuclease variation. Country of origin and time since the start of the pandemic were the most influential metadata associated with genomic variation, while host sex and age were the least influential. We define a novel statistic-coherence-and show its utility in identifying geographic regions (populations) with unusually high (many new variants) or low (isolated) viral phylogenetic diversity. Interestingly, at both global and regional scales, we identify geographic locations with high coherence neighboring regions of low coherence; this emphasizes the utility of this metric to inform public health measures for disease spread. Our results provide a direction to prioritize genes associated with outcome predictors (e.g., health, therapeutic, and vaccine outcomes) and to improve DNA tests for predicting disease status.


Subject(s)
Pandemics , SARS-CoV-2 , Genome, Viral , Humans , Mutation
8.
J Am Med Inform Assoc ; 29(4): 609-618, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1443051

ABSTRACT

OBJECTIVE: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations. MATERIALS AND METHODS: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements. RESULTS: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback. DISCUSSION: We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate. CONCLUSION: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.


Subject(s)
COVID-19 , Cohort Studies , Data Accuracy , Health Insurance Portability and Accountability Act , Humans , United States
9.
Viruses ; 12(7)2020 07 14.
Article in English | MEDLINE | ID: covidwho-1389516

ABSTRACT

Next-generation sequencing (NGS) offers a powerful opportunity to identify low-abundance, intra-host viral sequence variants, yet the focus of many bioinformatic tools on consensus sequence construction has precluded a thorough analysis of intra-host diversity. To take full advantage of the resolution of NGS data, we developed HAplotype PHylodynamics PIPEline (HAPHPIPE), an open-source tool for the de novo and reference-based assembly of viral NGS data, with both consensus sequence assembly and a focus on the quantification of intra-host variation through haplotype reconstruction. We validate and compare the consensus sequence assembly methods of HAPHPIPE to those of two alternative software packages, HyDRA and Geneious, using simulated HIV and empirical HIV, HCV, and SARS-CoV-2 datasets. Our validation methods included read mapping, genetic distance, and genetic diversity metrics. In simulated NGS data, HAPHPIPE generated pol consensus sequences significantly closer to the true consensus sequence than those produced by HyDRA and Geneious and performed comparably to Geneious for HIV gp120 sequences. Furthermore, using empirical data from multiple viruses, we demonstrate that HAPHPIPE can analyze larger sequence datasets due to its greater computational speed. Therefore, we contend that HAPHPIPE provides a more user-friendly platform for users with and without bioinformatics experience to implement current best practices for viral NGS assembly than other currently available options.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Viruses/genetics , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Genome, Viral , Genomics/methods , HIV/genetics , Haplotypes , Hepacivirus/genetics , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
10.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1236216

ABSTRACT

In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, comorbidities, genetics and other factors-compounding the complexity of COVID-19 pathobiology and potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP, NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19) that will help researchers and diagnosticians alike.

11.
PeerJ ; 8: e9572, 2020.
Article in English | MEDLINE | ID: covidwho-769818

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19), a public health emergency of international concerns declared by the World Health Organization (WHO). An immuno-informatics approach along with comparative genomics was applied to design a multi-epitope-based peptide vaccine against SARS-CoV-2 combining the antigenic epitopes of the S, M, and E proteins. The tertiary structure was predicted, refined and validated using advanced bioinformatics tools. The candidate vaccine showed an average of ≥90.0% world population coverage for different ethnic groups. Molecular docking and dynamics simulation of the chimeric vaccine with the immune receptors (TLR3 and TLR4) predicted efficient binding. Immune simulation predicted significant primary immune response with increased IgM and secondary immune response with high levels of both IgG1 and IgG2. It also increased the proliferation of T-helper cells and cytotoxic T-cells along with the increased IFN-γ and IL-2 cytokines. The codon optimization and mRNA secondary structure prediction revealed that the chimera is suitable for high-level expression and cloning. Overall, the constructed recombinant chimeric vaccine candidate demonstrated significant potential and can be considered for clinical validation to fight against this global threat, COVID-19.

12.
Sci Rep ; 10(1): 14004, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-724698

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel evolutionary divergent RNA virus, is responsible for the present devastating COVID-19 pandemic. To explore the genomic signatures, we comprehensively analyzed 2,492 complete and/or near-complete genome sequences of SARS-CoV-2 strains reported from across the globe to the GISAID database up to 30 March 2020. Genome-wide annotations revealed 1,516 nucleotide-level variations at different positions throughout the entire genome of SARS-CoV-2. Moreover, nucleotide (nt) deletion analysis found twelve deletion sites throughout the genome other than previously reported deletions at coding sequence of the ORF8 (open reading frame), spike, and ORF7a proteins, specifically in polyprotein ORF1ab (n = 9), ORF10 (n = 1), and 3´-UTR (n = 2). Evidence from the systematic gene-level mutational and protein profile analyses revealed a large number of amino acid (aa) substitutions (n = 744), demonstrating the viral proteins heterogeneous. Notably, residues of receptor-binding domain (RBD) showing crucial interactions with angiotensin-converting enzyme 2 (ACE2) and cross-reacting neutralizing antibody were found to be conserved among the analyzed virus strains, except for replacement of lysine with arginine at 378th position of the cryptic epitope of a Shanghai isolate, hCoV-19/Shanghai/SH0007/2020 (EPI_ISL_416320). Furthermore, our results of the preliminary epidemiological data on SARS-CoV-2 infections revealed that frequency of aa mutations were relatively higher in the SARS-CoV-2 genome sequences of Europe (43.07%) followed by Asia (38.09%), and North America (29.64%) while case fatality rates remained higher in the European temperate countries, such as Italy, Spain, Netherlands, France, England and Belgium. Thus, the present method of genome annotation employed at this early pandemic stage could be a promising tool for monitoring and tracking the continuously evolving pandemic situation, the associated genetic variants, and their implications for the development of effective control and prophylaxis strategies.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genetic Heterogeneity , Genome, Viral/genetics , Genome-Wide Association Study/methods , Global Health , Pneumonia, Viral/epidemiology , Amino Acid Sequence/genetics , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Base Pair Mismatch , Base Sequence/genetics , COVID-19 , Climate , Coronavirus Infections/virology , Humans , Open Reading Frames/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/virology , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2 , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL